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What is a Hybrid Model? 

•  Combination of several parallel 
programming models in the same 
program 
♦ May be mixed in the same source 
♦ May be combinations of components or 

routines, each of which is in a single parallel 
programming model 

•  MPI + Threads or MPI + OpenMP is the 
most familiar hybrid model (that 
involves MPI) 
♦ There are other interesting choices for 

which we should prepare 
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Why a Hybrid Model? 

•  Note that in some ways MPI is already a hybrid 
programming model (MPI + C; MPI + Fortran) 
♦  Adding a third programming model is not a major change… 

•  Also note that many applications are multilingual, built 
from pieces in C, C++, Python, Matlab, … 
♦  Developers use the best tool for each part of their program 

•  Scale of machines to come encourage the use of 
different programming models to address issues such as 
♦  Declining memory per core 
♦  Multiple threads/core 
♦  Load balance 
♦  Algorithmic issues 
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MPI and Threads 

•  MPI describes parallelism between processes 
(with separate address spaces) 

•  Thread parallelism provides a shared-memory 
model within a process 

•  OpenMP and Pthreads are common models 
♦  OpenMP provides convenient features for loop-level 

parallelism. Threads are created and managed by 
the compiler, based on user directives. 

♦  Pthreads provide more complex and dynamic 
approaches. Threads are created and managed 
explicitly by the user. 
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Programming for Multicore 

•  Almost all chips are multicore these days 
•  Today’s clusters often comprise multiple CPUs per node 

sharing memory, and the nodes themselves are 
connected by a network 

•  Common options for programming such clusters 
♦  All MPI 

•  Use MPI to communicate between processes both within a 
node and across nodes 

•  MPI implementation internally uses shared memory to 
communicate within a node 

♦  MPI + OpenMP (or MPI + OpenACC) 
•  Use OpenMP within a node and MPI across nodes 

♦  MPI + Pthreads 
•  Use Pthreads within a node and MPI across nodes  

•  The latter two approaches are known as “hybrid 
programming” 
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Myths About the MPI + OpenMP 
Hybrid Model 

1.  Never works 
•  Examples from FEM assembly, others show benefit 

2.  Always works 
•  Examples from NAS, EarthSim, others show MPI 

everywhere often as fast (or faster!) as hybrid models 

3.  Requires a special thread-safe MPI 
•  In many cases does not; in others, requires a level 

defined in MPI-2 

4.  Harder to program  
•  Harder than what? 
•  Really the classic solution to complexity - divide problem 

into separate problems 
•  10000-fold coarse-grain parallelism + 100-fold fine-grain 

parallelism gives 1,000,000-fold total parallelism 
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Special Note 

•  Because neither 1 nor 2 are true, and 4 isn't entirely false, 
it is important for applications to engineer codes for the 
hybrid model.  Applications must determine their: 
♦  Memory bandwidth requirements 
♦  Memory hierarchy requirements 
♦  Load Balance 

•  Don't confuse problems with getting good performance out 
of OpenMP with problems with the Hybrid programming 
model 

•  See Using OpenMP by Barbara Chapman,  
Gabriele Jost and Ruud van der Pas,  
Chapters 5 and 6, for programming  
OpenMP for performance 
♦  See pages 207-211 where they discuss the 

hybrid model 
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MPI’s Four Levels of Thread 
Safety 

•  MPI defines four levels of thread safety. These are in 
the form of commitments the application makes to the 
MPI implementation. 
♦  MPI_THREAD_SINGLE: only one thread exists in the 

application 
♦  MPI_THREAD_FUNNELED: multithreaded, but only the 

main thread makes MPI calls (the one that called MPI_Init 
or MPI_Init_thread) 

♦  MPI_THREAD_SERIALIZED: multithreaded, but only one 
thread at a time makes MPI calls 

♦  MPI_THREAD_MULTIPLE: multithreaded and any thread 
can make MPI calls at any time (with some restrictions to 
avoid races – see next slide) 
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Specifying the Level of 
Thread Safety 

• MPI defines an alternative to 
MPI_Init 
♦ MPI_Init_thread(requested, provided) 

• Application indicates what level it needs; 
MPI implementation returns the level it 
supports 

• Many (not all) builds of MPICH 
exploit this runtime control 
♦ If you don’t need thread safety, there 

is little extra cost 
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Specification of 
MPI_THREAD_MULTIPLE 

•  When multiple threads make MPI calls 
concurrently, the outcome will be as if the calls 
executed sequentially in some (any) order 

•  Blocking MPI calls will block only the calling thread 
and will not prevent other threads from running or 
executing MPI functions 

•  It is the user's responsibility to prevent races when 
threads in the same application post conflicting 
MPI calls  
♦  e.g., accessing an info object from one thread and 

freeing it from another thread 
•  User must ensure that collective operations on the 

same communicator, window, or file handle are 
correctly ordered among threads 
♦  e.g., cannot call a broadcast on one thread and a 

reduce on another thread on the same communicator 
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Threads and MPI in MPI-2  
(and MPI-3) 

•  An implementation is not required to 
support levels higher than 
MPI_THREAD_SINGLE; that is, an 
implementation is not required to be 
thread safe 

•  A fully thread-safe implementation will 
support MPI_THREAD_MULTIPLE 

•  A program that calls MPI_Init (instead of 
MPI_Init_thread) should assume that 
only MPI_THREAD_SINGLE is supported 
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The Current Situation 

•  All MPI implementations support MPI_THREAD_SINGLE 
(duh). 

•  They probably support MPI_THREAD_FUNNELED even if 
they don’t admit it. 
♦  Does require thread-safe malloc 
♦  Probably OK in OpenMP programs 

•  Many (but not all) implementations support 
THREAD_MULTIPLE 
♦  Hard to implement efficiently though (lock granularity 

issue) 

•  “Easy” OpenMP programs (loops parallelized with 
OpenMP, communication in between loops) only need 
FUNNELED 
♦  So don’t need “thread-safe” MPI for many hybrid programs 
♦  But watch out for Amdahl’s Law! 
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What MPI’s Thread Safety Means in 
the Hybrid MPI+OpenMP Context 

•  MPI_THREAD_SINGLE 
♦  There is no OpenMP multithreading in the program. 

•  MPI_THREAD_FUNNELED 
♦  All of the MPI calls are made by the master thread. 

i.e. all MPI calls are 
•  Outside OpenMP parallel regions, or 
•  Inside OpenMP master regions, or 
•  Guarded by call to MPI_Is_thread_main MPI call. 

-  (same thread that called MPI_Init_thread) 

•  MPI_THREAD_SERIALIZED 
#pragma omp parallel 
… 
#pragma omp single 
{ 
   …MPI calls allowed here… 
} 

•  MPI_THREAD_MULTIPLE 
♦  Any thread may make an MPI call at any time 
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Some Things to Watch for in 
OpenMP 

•  No standard way to manage memory affinity 
♦  “First touch” (have intended “owning” thread 

perform first access) provides initial static mapping 
of memory 

•  Next touch (move ownership to most recent thread) 
could help 

♦  No portable way to reassign affinity – reduces the 
effectiveness of OpenMP when used to improve load 
balancing. 

•  Memory model can require explicit “memory 
flush” operations 
♦  Defaults allow race conditions 
♦  Humans notoriously poor at recognizing all races 

•  It only takes one mistake to create a hard-to-find bug 
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Some Things to Watch for in  
MPI + OpenMP 

•  No interface for apportioning resources 
between MPI and OpenMP 
♦  On an SMP node, how many MPI processes and how 

many OpenMP Threads? 
•  Note the static nature assumed by this question 

♦  Note that having more threads than cores is 
important for hiding latency 

•  Requires very lightweight threads 

•  Competition for resources 
♦  Particularly memory bandwidth and network access 
♦  Apportionment of network access between threads 

and processes is also a problem, as we’ve already 
seen. 
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Where Does the MPI + OpenMP 
Hybrid Model Work Well? 

• Compute-bound loops 
♦ Many operations per memory load 

• Fine-grain parallelism 
♦ Algorithms that are latency-sensitive 

• Load balancing 
♦ Similar to fine-grain parallelism; ease of  

• Memory bound loops 



17 

Compute-Bound Loops 

• Loops that involve many 
operations per load from memory  
♦ This can happen in some kinds of 

matrix assembly, for example. 
♦ “Life” update partially compute bound 

(all of those branches) 
♦ Jacobi update not compute bound 
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Fine-Grain Parallelism 

•  Algorithms that require frequent 
exchanges of small amounts of data 

•  E.g., in blocked preconditioners, 
where fewer, larger blocks, each 
managed with OpenMP, as opposed 
to more, smaller, single-threaded 
blocks in the all-MPI version, gives 
you an algorithmic advantage (e.g., 
fewer iterations in a preconditioned 
linear solution algorithm). 

•  Even if memory bound 
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Load Balancing 

• Where the computational load isn't 
exactly the same in all threads/
processes; this can be viewed as a 
variation on fine-grained access.  

• More on this later (OpenMP 
currently not well-suited, 
unfortunately.  An option is to use 
Pthreads directly.) 
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Memory-Bound Loops 

• Where read data is shared, so that 
cache memory can be used more 
efficiently. 

• Example: Table lookup for 
evaluating equations of state 
♦ Table can be shared 
♦ If table evaluated as necessary, 

evaluations can be shared     
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Where is Pure MPI Better? 

•  Trying to use OpenMP + MPI on very 
regular, memory-bandwidth-bound 
computations is likely to lose because of 
the better, programmer-enforced 
memory locality management in the 
pure MPI version. 

•  Another reason to use more than one 
MPI process - if a single process (or 
thread) can't saturate the interconnect - 
then use multiple communicating 
processes or threads. 
♦ Note that threads and processes are not 

equal - see next slides 
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Tests with Multiple Threads 
versus Processes 
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•  Consider these two 
cases: 
♦  Nodes with 4 cores 
♦  1 process with four 

threads sends to 1 process 
with four threads, each 
thread sending, or 

♦  4 processes, each with 
one thread, sending to a 
corresponding thread 

•  User expectation is that 
the performance is the 
same 

•  Results are joint work 
with Rajeev Thakur 
(Argonne) 
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Concurrent Bandwidth Test 

Lesson: Its hard to provide full performance from threads 

(Recent results on current platforms show similar 
behavior) 
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Locality is Critical 

•  Placement of processes and threads 
is critical for performance 
♦ Placement of processes impacts use of 

communication links; poor placement 
creates more communication 

♦ Placement of threads within a process on 
cores impacts both memory and 
intranode performance 
• Threads must bind to preserve cache  
•  In multi-chip nodes, some cores closer than 

others – same issue as processes 

• MPI has limited, but useful, features 
for placement 



25 

Importance of ordering processes/
threads within a multichip node 

•  2x4 processes in a mesh 
•  How should they be 

mapped onto this single 
node? 

•  Round robin (by chip)? 
♦  Labels are coordinates of 

process in logical 
computational mesh 

♦  Results in 3x interchip 
communication than the 
natural order 

♦  Same issue results if there 
is 1 process with 4 threads 
on each chip, or 1 process 
with 8 threads on the node 

core core 

core core 

core core 

core core 

0,0 2,0 

0,1 2,1 

1,0 3,0 

1,1 3,1 
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Hybrid Model Options: Fine 

•  Fine grain model: 
♦ Program is single threaded except when 

actively using multiple threads, e.g., for 
loop processing 

♦ Pro: 
•  Easily added to existing MPI program 

♦ Con: 
•  Adds overhead in creating and/or managing 

threads 
•  Locality and affinity may be an issue (no 

guarantees) 
•  Amdahl’s Law problem – serial sections limit 

speedup 



27 

Hybrid Model Options: 
Coarse 

• Coarse grain model 
♦ Majority of program runs within “omp 

parallel” 
♦ Pro: 

• Lowers overhead of using threads, 
including creation, locality, and affinity 

• Promotes a more parallel coding style 

♦ Con: 
• More complex coding, easier to introduce 

race condition errors 
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Challenges for  
Programming Models 

•  Parallel programming models need to provide ways to 
coordinate resource allocation 
♦  Numbers of cores/threads  
♦  Assignment (affinity) of cores/threads 
♦  Intranode memory bandwidth 
♦  Internode memory bandwidth 

•  They must also provide clean ways to share data 
♦  Consistent memory models 
♦  Decide whether its best to make it easy and transparent 

for the programmer (but slow) or fast but hard (or 
impossible, which is often the current state) 

•  Remember, parallel programming is about performance 
♦  You will always get higher programmer productivity with a 

single threaded code 
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Challenges for 
Implementations 

•  Sharing of communication infrastructure 
♦  For example, the Berkeley UPC implementation 

makes use of GASNET, an efficient, portable 
communication layer 

♦  But GASNET does not provide all of the features 
required by an efficient, full MPI implementation 

♦  Similarly, the communication layer used by MPI 
implementations may not provide all of the features 
needed by UPC (see “Problems with using MPI 1.1 
and 2.0 as compilation targets for parallel language 
implementations”, Dan Bonachea, Jason Duell) 

•  It is possible to build such infrastuctures 
♦  But current examples only address some of the 

issues. 
♦  Resource allocation and sharing not covered 
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Conclusions 

•  Hybrid programming models exploit complementary 
strengths 
♦  In many cases, can replace OpenMP with OpenACC or 

other accelerator programming system 

•  Evolutionary Path to Hybrid Models 
♦  Short term - better support for resource sharing 

•  We need to experiment with specifying additional information, 
e.g., through mpiexec 

♦  Medium term - better support for interoperating 
components 

•  We need to ensure that communication infrastructures can 
cooperate 

•  Consider extensions to make implementations aware that they 
are in a hybrid model program 

♦  Long term - Generalized model, efficient sharing of 
communication and computation infrastructure 


